TOTAL SINGULARITY DEGREE 4, CASE $1+3$

E. D. DAHL

Let q and q^{\prime} be members of Q. Let c and c^{\prime} be members of a cyclic cubic field K. The Galois group of K is C_{3}, which we will write multiplicatively. Let C_{3} be generated by g and denote the action of g (resp. g^{2}) on c by c^{*} (resp. $c^{* *}$). By analogy with the cross-ratio of four rational values, define an invariant I_{1} which is a function of q and c as follows:

$$
I_{1}(q, c)=\frac{(q-c)\left(c^{*}-c^{* *}\right)}{\left(q-c^{* *}\right)\left(c^{*}-c\right)}
$$

Using the embedding of the cyclic cubic field into the algebra, express the elements c and c^{\prime} as follows:

$$
\begin{gathered}
c=z+r J(\theta) \\
c^{\prime}=z^{\prime}+r^{\prime} J\left(\theta^{\prime}\right)
\end{gathered}
$$

The embedding was chosen so that the Galois conjugates of c and c^{\prime} can be expressed easily. For example:

$$
\begin{aligned}
& c^{*}=z+r J\left(\theta+\frac{2 \pi}{3}\right) \\
& c^{* *}=z+r J\left(\theta+\frac{4 \pi}{3}\right)
\end{aligned}
$$

The Galois conjugates of c^{\prime} are similar. The invariant I_{1} then assumes this form:

$$
I_{1}(q, c)=\frac{(q-z-r J(\theta))\left(J\left(\theta+\frac{2 \pi}{3}\right)-J\left(\theta+\frac{4 \pi}{3}\right)\right)}{\left(q-z-r J\left(\theta+\frac{4 \pi}{3}\right)\right)\left(J\left(\theta+\frac{2 \pi}{3}\right)-J(\theta)\right)}
$$

Equate the invariant I_{1} evaluated at (q, c) and $\left(q^{\prime}, c^{\prime}\right)$:

$$
I_{1}(q, c)=I_{1}\left(q^{\prime}, c^{\prime}\right)
$$

$I_{1}\left(q^{\prime}, c^{\prime}\right)$ has this value:

$$
I_{1}^{\prime}=\frac{\left(q^{\prime}-z^{\prime}-r^{\prime} J\left(\theta^{\prime}\right)\right)\left(J\left(\theta^{\prime}+\frac{2 \pi}{3}\right)-J\left(\theta^{\prime}+\frac{4 \pi}{3}\right)\right)}{\left(q^{\prime}-z^{\prime}-r^{\prime} J\left(\theta^{\prime}+\frac{4 \pi}{3}\right)\right)\left(J\left(\theta^{\prime}+\frac{2 \pi}{3}\right)-J\left(\theta^{\prime}\right)\right)}
$$

Multiply through by the denominators in the two expressions for $I_{1}(q, c)$ and $I_{1}\left(q^{\prime}, c^{\prime}\right)$ to get this equation:
$L H S=(q-z-r J(\theta))\left(J\left(\theta+\frac{2 \pi}{3}\right)-J\left(\theta+\frac{4 \pi}{3}\right)\right)\left(q^{\prime}-z^{\prime}-r^{\prime} J\left(\theta^{\prime}+\frac{4 \pi}{3}\right)\right)\left(J\left(\theta^{\prime}+\frac{2 \pi}{3}\right)-J\left(\theta^{\prime}\right)\right)$

